1.情境学习与泛化能力:VILA通过预训练不仅提升了情境学习能力,即模型对新情境的适应性和学习能力,而且还优化了其泛化能力,使模型能在不同的视觉语言任务上展现出色的性能。这个框架旨在通过有效的嵌入对齐和动态神经网络架构,改进语言模型的视觉和文本的学习能力。3.融合层:融合层是VILA模型的核心,它负责整合来自视觉处理单元和语言处理单元的信息,生成统一的、多模态的表示,这对于执行跨模态任务至关重要4.优化策略:包括技术如弹性权重共享和梯度截断,这些策略帮助模型在训练过程中保持稳定,并优化跨模态信息的流动。