总的来说,TCN继承了CNN处理局部特征的优势,并通过特定的网络结构和操作,赋予了模型处理时间序列数据的能力。相比传统RNN,TCN在长序列建模、并行计算以及模型训练稳定性等方面都有较大优势,在时间序列预测、语音识别等任务中展现了良好的性能。- TCN通过使用扩张卷积(Dilated Convolution)和填充(Padding)等技术,可以保证模型的因果性,即输出只依赖于当前及之前的输入。- 与RNN需要依次处理序列中的每个时间步不同,TCN的卷积操作可以在整个序列上并行进行,提高了计算效率。