Redis面试题、知识点总结,一篇文章让Redis成为面试加分项
前言
参与了几次中大厂的面试,你会发现一面时对于八股文的考察也具有侧重点(MySQL=Redis > 网络 > 系统 >设计模式 > java集合> JVM >spring)
本文的目标就是通过这一篇文章让你能在面试时将Redis相关的问题回答漂亮。
所以整理问题时,本文会从一个问题出发(面试官会问),联想出更多问题(面试官可能会追问,也可以自己说:我还知道。。。)以求加分。(当你对一块知识了解的比较好时,就要想办法拉长这块内容的面试时长)
1.Redis基础
Redis了解吗?
Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,加上Redis对使用的数据结构做了优化,因此读写速度非常快,最常用于做缓存。
[Redis基础联想1]:提到数据结构和缓存这两个关键字,尽量引出追问
[Redis基础联想2]: 为什么用 Redis 作为 MySQL 的缓存?:主要是因为 Redis 具备「高性能」和「高并发」两种特性。
高性能是因为Redis是基于内存的,比直接使用MySQL在硬盘中读数据快很多。(提到MySQL可能会引出双写一致性问题)
高并发是指单台设备的Redis的QPS是MySQL的10倍,能到达10w+。
2.Redis数据结构
你知道哪些Redis的数据类型?
常见的有五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)。
[数据类型联想1]:这些数据类型的应用场景有哪些?
- String 类型的应用场景:缓存对象、常规计数、分布式锁、共享 session 信息等。
- List 类型的应用场景:消息队列(但是有两个问题:1. 生产者需要自行实现全局唯一 ID;2. 不能以消费组形式消费数据)等。
- Hash 类型:缓存对象、购物车等。
- Set 类型:聚合计算(并集、交集、差集)场景,比如点赞、共同关注、抽奖活动等。
- Zset 类型:排序场景,比如排行榜、电话和姓名排序等。
[数据类型联想2]:String底层数据结构知道吗?
SDS:简单动态字符串,是对c语言中char数组缺点的改进:
- char数组不能保存二进制数据,因为其以’\n’作为字符串的结尾,而SDS使用整型数组保存数据,可以保存图片、视频等二进制数据。
- char数组获取数组长度时间复杂度O(n),SDS维护一个len属性,做到了O(1)
- char数组拼接字符串可能造成缓冲区溢出,SDS维护内存大小的属性,减去len属性就可以得到剩余可用内存检查是否够用,不够则扩容。
[数据类型联想3]:Zset底层数据结构知道吗?
答:压缩列表或跳表。
- 如果有序集合的元素个数小于 128 个,并且每个元素的值小于 64 字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构;
- 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
追问:压缩列表有什么问题,为什么废弃?
答:连锁更新,压缩列表每个节点会记录前一个节点的长度,记录这个长度默认需要一个字节,当一个字节保存不下时(超过254)会扩充到5个字节,当一个节点长度改变或插入节点时,可能会让下一个节点的记录长度扩充4个字节,使得整体长度变长,又可能导致下下一个节点长度改变,触发连锁反应,浪费资源。
再追问:那跳表了解吗?
跳表是一个可以快速查找的有序链表, 搜索、插入、删除操作的时间复杂度跟红黑树都是一样量级的均为O(logn)
再再最追问:那Redis为什么用跳表不用红黑树呢?
跳表不采用红黑树、平衡二叉树这类平衡树的原因主要有两点(答出两点就够了):
- 在做范围查找的时候,跳表比平衡树操作要简单。在平衡树上,我们找到指定范围的小值之后,还需要以中序遍历的顺序继续寻找其它不超过大值的节点。如果不对平衡树进行一定的改造,这里的中序遍历并不容易实现。而在跳表上进行范围查找就非常简单,只需要在找到小值之后,对第 1 层链表进行若干步的遍历就可以实现。
- 从算法实现难度上来比较,跳表比平衡树要简单得多。平衡树的插入和删除操作可能引发子树的调整,逻辑复杂,而跳表的插入和删除只需要修改相邻节点的指针,操作简单又快速。
3.Redis线程模型
Redis 是单线程吗?(经典)
我们常说Redis是单线程的是因为,Redis从接收请求到操作数据再到回复请求这个主要过程是有一个线程(主线程)完成的。
但是实际上Redis并不是单线程的,Redis有后台线程负责处理文件关闭,AOF刷盘,释放内存等耗时任务。
[Redis线程联想1]:Redis 采用单线程为什么还这么快?(经典追问)
有如下几个原因:
- Redis 的大部分操作都在内存中完成,并且采用了高效的数据结构,因此 Redis 瓶颈可能是机器的内存或者网络带宽,而并非 CPU。(既然 CPU 不是瓶颈,那么自然就采用单线程的解决方案了)
- Redis 采用单线程模型可以避免了多线程之间的竞争,省去了多线程切换带来的时间和性能上的开销,而且也不会导致死锁问题。
- Redis 采用了 I/O 多路复用机制处理大量的客户端 Socket 请求,IO 多路复用机制是指一个线程处理多个 IO 流。(就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听 Socket 和已连接 Socket。内核会一直监听这些 Socket 上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。)
4.Redis持久化
Redis 如何实现数据不丢失?
为了保证内存中的数据不会丢失,Redis 实现了数据持久化的机制,这个机制会把数据存储到磁盘,这样在 Redis 重启就能够从磁盘中恢复原有的数据。
Redis 共有三种数据持久化的方式:
- AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;
- RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;
- 混合持久化方式:Redis 4.0 新增的方式,集成了 AOF 和 RBD 的优点;
[持久化联想1]: AOF 日志是如何实现的?
Redis 先执行完一条写操作命令,然后把该命令以追加的方式写入到一个文件里,然后 Redis 重启时,会读取该文件记录的命令,然后逐一执行命令的方式来进行数据恢复。
追问:为什么先执行命令,再把数据写入日志呢?
答“如果先将写操作命令记录到 AOF 日志里,再执行该命令的话,如果当前的命令语法有问题,那么如果不进行命令语法检查,该错误的命令记录到 AOF 日志里后,Redis 在使用日志恢复数据时,就可能会出错。
再追问:先执行命令后写入日志有什么问题吗?
- 数据可能会丢失: 执行写操作命令和记录日志是两个过程,那当 Redis 在还没来得及将命令写入到硬盘时,服务器发生宕机了,这个数据就会有丢失的风险。
- 可能阻塞其他操作: 由于写操作命令执行成功后才记录到 AOF 日志,所以不会阻塞当前命令的执行,但因为 AOF 日志也是在主线程中执行,所以当 Redis 把日志文件写入磁盘的时候,还是会阻塞后续的操作无法执行。
[持久化联想2]:AOF 日志过大,会触发什么机制?
会出发aof重写机制,AOF中可能有不再有用的命令,AOF 重写机制是在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。
追问:重写的过程中,主进程修改了已经存在的key-value怎么办?
答:如果主进程修改了已经存在 key-value,那么会发生写时复制,此时这个 key-value 数据在子进程的内存数据就跟主进程的内存数据不一致了,为了解决这种数据不一致问题,Redis 设置了一个 AOF 重写缓冲区,当 Redis 执行完一个写命令之后,它会同时将这个写命令写入到 「AOF 缓冲区」和 「AOF 重写缓冲区」。当子进程完成 AOF 重写工作后,会向主进程发送一条信号,主进程收到该信号后,会调用一个信号处理函数,该函数主要做以下工作:
- 将 AOF 重写缓冲区中的所有内容追加到新的 AOF 的文件中,使得新旧两个 AOF 文件所保存的数据库状态一致;
- 新的 AOF 的文件进行改名,覆盖现有的 AOF 文件。
[持久化联想3]:RDB 快照是如何实现的呢?
一旦 AOF 日志非常多,势必会造成 Redis 的恢复操作缓慢。为了解决这个问题,Redis 增加了 RDB 快照。RDB 快照就是记录某一个瞬间的内存数据,在 Redis 恢复数据时,直接将 RDB 文件读入内存就可以。
追问:RDB 在执行快照的时候,数据能修改吗?
答:不推荐,但是可以的,执行 bgsave 过程中,Redis 依然可以继续处理操作命令的,也就是数据是能被修改的,关键的技术就在于**写时复制技术(Copy-On-Write, COW)。**如果主线程执行写操作,则被修改的数据会复制一份副本,然后 bgsave 子进程会把该副本数据写入 RDB 文件,在这个过程中,主线程仍然可以直接修改原来的数据。会造成数据不一致,是要等下一轮持久化执行时再去同步,如果redis突然宕机,就是会导致丢失部分最新数据的。
[持久化联想4]:Redis采用的是哪种方式?/为什么会有混合持久化?
RDB 优点是数据恢复速度快,但是快照的频率不好把握。频率太低,丢失的数据就会比较多,频率太高,就会影响性能。
AOF 优点是丢失数据少,但是数据恢复不快。
为了集成了两者的优点, Redis 4.0 提出了混合使用 AOF 日志和内存快照,也叫混合持久化,既保证了 Redis 重启速度,又降低数据丢失风险。混合持久化工作在 AOF 日志重写过程,当开启了混合持久化时,在 AOF 重写日志时,fork 出来的重写子进程会先将与主线程共享的内存数据以 RDB 方式写入到 AOF 文件,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区里的增量命令会以 AOF 方式写入到 AOF 文件,写入完成后通知主进程将新的含有 RDB 格式和 AOF 格式的 AOF 文件替换旧的的 AOF 文件。
也就是说,使用了混合持久化,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分是 AOF 格式的增量数据。
追问:混合持久化有什么优缺点?
混合持久化优点:
- 混合持久化结合了 RDB 和 AOF 持久化的优点,开头为 RDB 的格式,使得 Redis 可以更快的启动,同时结合 AOF 的优点,有减低了大量数据丢失的风险。
混合持久化缺点:
- AOF 文件中添加了 RDB 格式的内容,使得 AOF 文件的可读性变得很差;
- 兼容性差,如果开启混合持久化,那么此混合持久化 AOF 文件,就不能用在 Redis 4.0 之前版本了。
5.Redis集群
Redis 如何实现服务高可用?
要想设计一个高可用的 Redis 服务,一定要从 Redis 的多服务节点来考虑,比如 Redis 的主从复制、哨兵模式、切片集群。
[集群联想1]:主从复制是什么?
主从复制是 Redis 高可用服务的最基础的保证,实现方案就是将从前的一台 Redis 服务器,同步数据到多台从 Redis 服务器上,即一主多从的模式,且主从服务器之间采用的是「读写分离」的方式。
主服务器可以进行读写操作,当发生写操作时自动将写操作同步给从服务器,而从服务器一般是只读,并接受主服务器同步过来写操作命令,然后执行这条命令。注意,主从服务器之间的命令复制是异步进行的。所以,无法实现强一致性保证(主从数据时时刻刻保持一致),数据不一致是难以避免的。
[集群联想2]:哨兵模式了解吗?
在使用 Redis 主从服务的时候,会有一个问题,就是当 Redis 的主从服务器出现故障宕机时,需要手动进行恢复。
为了解决这个问题,Redis 增加了哨兵模式(Redis Sentinel),因为哨兵模式做到了可以监控主从服务器,并且提供主从节点故障转移的功能。
[集群联想3]:切片集群模式?当 Redis 缓存数据量大到一台服务器无法缓存用什么模式?
当 Redis 缓存数据量大到一台服务器无法缓存时,就需要使用 Redis 切片集群(Redis Cluster )方案,它将数据分布在不同的服务器上,以此来降低系统对单主节点的依赖,从而提高 Redis 服务的读写性能。
Redis Cluster 方案采用哈希槽(Hash Slot),来处理数据和节点之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中,具体执行过程分为两大步:
- 根据键值对的 key,按照 CRC16 算法 (opens new window)计算一个 16 bit 的值。
- 再用 16bit 值对 16384 取模,得到 0~16383 范围内的模数,每个模数代表一个相应编号的哈希槽。
哈希槽被自动平均或手动分配映射到各Redis节点上。
[集群联想4]:集群脑裂知道吗?
在 Redis 主从架构中,部署方式一般是「一主多从」,主节点提供写操作,从节点提供读操作。 如果主节点的网络突然发生了问题,哨兵发现主节点失联了,它就认为主节点挂了(但实际上主节点正常运行,只是网络出问题了),于是哨兵就会在「从节点」中选举出一个 leader 作为主节点,这时集群就有两个主节点了 —— 脑裂出现了。
等网络恢复,旧主节点会降级为从节点,再与新主节点进行同步复制的时候,由于会从节点会清空自己的缓冲区,所以导致之前客户端写入的数据丢失了。
追问:那脑裂问题怎么解决呢?
答:当主节点发现从节点总数量小于阈值或者通信超时,那么禁止主节点进行写数据,直接把错误返回给客户端。等到新主库上线时,就只有新主库能接收和处理客户端请求,此时,新写的数据会被直接写到新主库中。而原主库会被哨兵降为从库,即使它的数据被清空了,也不会有新数据丢失。
6.Redis过期删除与内存淘汰策略
Redis 使用的过期删除策略知道吗?
每当我们对一个 key 设置了过期时间时,Redis 会把该 key 带上过期时间存储到一个过期字典(expires dict)中,当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:
- 如果不在,则正常读取键值;
- 如果存在,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期。
Redis 使用的过期删除策略是「惰性删除+定期删除」这两种策略配和使用。
[过期策略联想1]:什么是惰性删除策略?
惰性删除策略的做法是,不主动删除过期键,每次从数据库访问 key 时,都检测 key 是否过期,如果过期则删除该 key。优点是只会使用很少的系统资源,惰性删除策略对 CPU 时间最友好。过期 key 一直没有被访问,它所占用的内存就不会释放,造成了一定的内存空间浪费。所以,惰性删除策略对内存不友好。
追问:那定期删除策略呢?
答:定期删除策略的做法是,每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。定期删除是一个循环的流程,比如每次抽20个key,如果这20个key中过期key超过了25%,那就再抽20个,直到不到25%或者该流程执行时长超过阈值(25ms)。优点是概率上讲不会有过期key长时间不删除,缺点是以确定删除操作执行的时长和频率。如果执行的太频繁,就会对 CPU 不友好;如果执行的太少,那又和惰性删除一样了,过期 key 占用的内存不会及时得到释放。
所以惰性删除策略和定期删除策略都有各自的优点,所以 Redis 选择「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。
[过期策略联想2]: Redis 持久化时,对过期键会如何处理的?
持久化有两种机制,RDB和AOF。
RDB分为两个阶段,RDB文件生成阶段和加载阶段,生成阶段不会生成过期key的数据,加载阶段主服务器也会对过期键检查,不加载过期数据,而从服务器加载全部数据,但是在进行数据同步时从服务器数据会被清空。
AOF也分为两个阶段,AOF文件写入阶段和重写阶段,写入阶段时,如果数据库某个过期键还没被删除,那么 AOF 文件会保留此过期键,当此过期键被删除后,Redis 会向 AOF 文件追加一条 DEL 命令来显式地删除该键值。 重写阶段时,会对 Redis 中的键值对进行检查,已过期的键不会被保存到重写后的 AOF 文件中。
Redis 内存满了,会发生什么?
在 Redis 的运行内存达到了某个阀值,就会触发内存淘汰机制。内存淘汰机制可以两类,一类是在设置了过期时间的数据中进行淘汰,可以选择 随机淘汰,更早过期的先淘汰,最近最少使用先淘汰(LRU),最少使用先淘汰(LFU)。还一种是在所有数据范围内进行淘汰,可以选择随机淘汰,最近最少使用先淘汰(LRU),最少使用先淘汰(LFU)。
[内训淘汰联想1]:LRU 算法和 LFU 算法有什么区别?
LRU 全称是 Least Recently Used 翻译为最近最少使用,会选择淘汰最近最少使用的数据。传统 LRU 算法的实现是基于「链表」结构,Redis 实现的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是在 Redis 的对象结构体中添加一个额外的字段,用于记录此数据的最后一次访问时间。
当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。 LRU 算法有一个问题,无法解决缓存污染问题,比如应用一次读取了大量的数据,而这些数据只会被读取这一次,那么这些数据会留存在 Redis 缓存中很长一段时间,造成缓存污染。
因此,在 Redis 4.0 之后引入了 LFU 算法来解决这个问题。
LFU 全称是 Least Frequently Used 翻译为最近最不常用的,LFU 算法是根据数据访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。
7.Redis缓存
如何避免缓存雪崩、缓存击穿、缓存穿透?
- 如何避免缓存雪崩?:当大量缓存数据在同一时间过期(失效)时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩的问题。可以采用两种方案解决:
- 将缓存失效时间随机打散: 我们可以在原有的失效时间基础上增加一个随机值(比如 1 到 10 分钟)这样每个缓存的过期时间都不重复了,也就降低了缓存集体失效的概率。
- 设置缓存不过期: 我们可以通过后台服务来更新缓存数据,从而避免因为缓存失效造成的缓存雪崩,也可以在一定程度上避免缓存并发问题。
- 如何避免缓存击穿?:缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿的问题。应对缓存击穿可以采取两种方案:
- 互斥锁方案(Redis 中使用 setNX 方法设置一个状态位,表示这是一种锁定状态),保证同一时间只有一个业务线程请求缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。
- 不给热点数据设置过期时间,由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间;
- 如何避免缓存穿透?:当用户访问的数据,既不在缓存中,也不在数据库中,那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题。应对缓存穿透的方案,常见的方案有三种:
- 非法请求的限制:在 API 入口处我们要判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。
- 设置空值或者默认值:对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库。
- 使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在:我们可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在,Redis 自身也是支持布隆过滤器的。
如何设计一个缓存策略,可以动态缓存热点数据呢?
热点数据动态缓存的策略总体思路:通过数据最新访问时间来做排名,并过滤掉不常访问的数据,只留下经常访问的数据。
以电商平台场景中的例子,现在要求只缓存用户经常访问的 Top 1000 的商品。具体细节如下:
- 先通过缓存系统做一个排序队列(比如存放 1000 个商品),系统会根据商品的访问时间,更新队列信息,越是最近访问的商品排名越靠前;
- 同时系统会定期过滤掉队列中排名最后的 200 个商品,然后再从数据库中随机读取出 200 个商品加入队列中;
- 这样当请求每次到达的时候,会先从队列中获取商品 ID,如果命中,就根据 ID 再从另一个缓存数据结构中读取实际的商品信息,并返回。
在 Redis 中可以用 zadd 方法和 zrange 方法来完成排序队列和获取 200 个商品的操作。
缓存更新策略知道吗?
常见的缓存更新策略共有3种:
- Cache Aside(旁路缓存)策略;
- Read/Write Through(读穿 / 写穿)策略;
- Write Back(写回)策略;
实际开发中,Redis 和 MySQL 的更新策略用的是 Cache Aside,另外两种策略应用不了。
[缓存更新联想1]:Cache Aside(旁路缓存)策略:
该策略又可以细分为「读策略」和「写策略」
写策略的步骤:
- 先更新数据库中的数据,再删除缓存中的数据。
读策略的步骤:
- 如果读取的数据命中了缓存,则直接返回数据;
- 如果读取的数据没有命中缓存,则从数据库中读取数据,然后将数据写入到缓存,并且返回给用户。
注:写策略不管是先更后删还是先删后更都会造成数据不一致。前者概率上更低。
[缓存更新联想2]:如何保证缓存和数据库数据的一致性?
先更后删还是先删后更都会造成数据不一致,提供两种做法:
- 在更新缓存前先加个分布式锁,保证同一时间只运行一个请求更新缓存,就会不会产生并发问题了,当然引入了锁后,对于写入的性能就会带来影响。
- 在更新完缓存时,给缓存加上较短的过期时间,这样即时出现缓存不一致的情况,缓存的数据也会很快过期,对业务还是能接受的。
针对「先删除缓存,再更新数据库」方案在「读 + 写」并发请求而造成缓存不一致的解决办法是「延迟双删」。加了个睡眠时间,主要是为了确保请求 A 在睡眠的时候,请求 B 能够在这这一段时间完成「从数据库读取数据,再把缺失的缓存写入缓存」的操作,然后请求 A 睡眠完,再删除缓存。所以,请求 A 的睡眠时间就需要大于请求 B 「从数据库读取数据 + 写入缓存」的时间。
但是具体睡眠多久其实是个玄学,很难评估出来,所以这个方案也只是尽可能保证一致性而已,极端情况下,依然也会出现缓存不一致的现象。
8.其他常问
Redis 如何实现延迟队列?
延迟队列是指把当前要做的事情,往后推迟一段时间再做。延迟队列一般用在订单自动取消。
在 Redis 可以使用有序集合(ZSet)的方式来实现延迟消息队列的,ZSet 有一个 Score 属性可以用来存储延迟执行的时间。
使用 zadd score1 value1 命令就可以一直往内存中生产消息。再利用 zrangebysocre 查询符合条件的所有待处理的任务, 通过循环执行队列任务即可。
Redis 管道有什么用?
管道技术(Pipeline)是客户端提供的一种批处理技术,用于一次处理多个 Redis 命令,从而提高整个交互的性能。使用管道技术可以解决多个命令执行时的网络等待,它是把多个命令整合到一起发送给服务器端处理之后统一返回给客户端,这样就免去了每条命令执行后都要等待的情况,从而有效地提高了程序的执行效率。
Redis 事务支持回滚吗?
Redis 中并没有提供回滚机制,虽然 Redis 提供了 DISCARD 命令,但是这个命令只能用来主动放弃事务执行,把暂存的命令队列清空,起不到回滚的效果。
如何用 Redis 实现分布式锁的?
Redis 本身可以被多个客户端共享访问,正好就是一个共享存储系统,可以用来保存分布式锁,而且 Redis 的读写性能高,可以应对高并发的锁操作场景。
Redis 的 SET 命令有个 NX 参数可以实现「key不存在才插入」,所以可以用它来实现分布式锁:
- 如果 key 不存在,则显示插入成功,可以用来表示加锁成功;
- 如果 key 存在,则会显示插入失败,可以用来表示加锁失败。
基于 Redis 节点实现分布式锁时,对于加锁操作,我们需要满足三个条件。
- 加锁包括了读取锁变量、检查锁变量值和设置锁变量值三个操作,但需要以原子操作的方式完成,所以,我们使用 SET 命令带上 NX 选项来实现加锁;
- 锁变量需要设置过期时间,以免客户端拿到锁后发生异常,导致锁一直无法释放,所以,我们在 SET 命令执行时加上 EX/PX 选项,设置其过期时间;
- 锁变量的值需要能区分来自不同客户端的加锁操作,以免在释放锁时,出现误释放操作,所以,我们使用 SET 命令设置锁变量值时,每个客户端设置的值是一个唯一值,用于标识客户端;
满足这三个条件的分布式命令如下:
SET lock_key unique_value NX PX 10000
- lock_key 就是 key 键;
- unique_value 是客户端生成的唯一的标识,区分来自不同客户端的锁操作;
- NX 代表只在 lock_key 不存在时,才对 lock_key 进行设置操作;
- PX 10000 表示设置 lock_key 的过期时间为 10s,这是为了避免客户端发生异常而无法释放锁。
而解锁的过程就是将 lock_key 键删除(del lock_key),但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将 lock_key 键删除。
可以看到,解锁是有两个操作,这时就需要 Lua 脚本来保证解锁的原子性,因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,保证了锁释放操作的原子性。
// 释放锁时,先比较 unique_value 是否相等,避免锁的误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
这样一来,就通过使用 SET 命令和 Lua 脚本在 Redis 单节点上完成了分布式锁的加锁和解锁。
基于 Redis 实现分布式锁有什么优缺点?
基于 Redis 实现分布式锁的优点:
- 性能高效(这是选择缓存实现分布式锁最核心的出发点)。
- 实现方便。很多研发工程师选择使用 Redis 来实现分布式锁,很大成分上是因为 Redis 提供了 setnx 方法,实现分布式锁很方便。
- 避免单点故障(因为 Redis 是跨集群部署的,自然就避免了单点故障)。
基于 Redis 实现分布式锁的缺点:
-
超时时间不好设置
。如果锁的超时时间设置过长,会影响性能,如果设置的超时时间过短会保护不到共享资源。比如在有些场景中,一个线程 A 获取到了锁之后,由于业务代码执行时间可能比较长,导致超过了锁的超时时间,自动失效,注意 A 线程没执行完,后续线程 B 又意外的持有了锁,意味着可以操作共享资源,那么两个线程之间的共享资源就没办法进行保护了。
- 那么如何合理设置超时时间呢? 我们可以基于续约的方式设置超时时间:先给锁设置一个超时时间,然后启动一个守护线程,让守护线程在一段时间后,重新设置这个锁的超时时间。实现方式就是:写一个守护线程,然后去判断锁的情况,当锁快失效的时候,再次进行续约加锁,当主线程执行完成后,销毁续约锁即可,不过这种方式实现起来相对复杂。
-
Redis 主从复制模式中的数据是异步复制的,这样导致分布式锁的不可靠性。如果在 Redis 主节点获取到锁后,在没有同步到其他节点时,Redis 主节点宕机了,此时新的 Redis 主节点依然可以获取锁,所以多个应用服务就可以同时获取到锁。
Redis 如何解决集群情况下分布式锁的可靠性?
为了保证集群环境下分布式锁的可靠性,Redis 官方已经设计了一个分布式锁算法 Redlock(红锁)。
它是基于多个 Redis 节点的分布式锁,即使有节点发生了故障,锁变量仍然是存在的,客户端还是可以完成锁操作。官方推荐是至少部署 5 个 Redis 节点,而且都是主节点,它们之间没有任何关系,都是一个个孤立的节点。
Redlock 算法的基本思路,是让客户端和多个独立的 Redis 节点依次请求申请加锁,如果客户端能够和半数以上的节点成功地完成加锁操作,那么我们就认为,客户端成功地获得分布式锁,否则加锁失败。
这样一来,即使有某个 Redis 节点发生故障,因为锁的数据在其他节点上也有保存,所以客户端仍然可以正常地进行锁操作,锁的数据也不会丢失。