个人技术分享

1.基本概念

1.Index索引

动词:相当于MySQL中的insert;

名词:相当于MySQL中的DataBase;

2.Type(类型)

在Index(索引)中,可以定义一个或多个类型

类似于MySQL中的Table;每一种类型的数据放在一起

3.Document(文档)

保存在某个索引(index)下,某种类型(Type) 的一个数据(Document),文档是JSON格式的,Document就像是MySQL 中的某个Table里面的内容 类似一行数据

4.倒排索引

2.Docker 安装ElasticSearch

2.1 拉取镜像

docker pull elasticsearch:7.4.2
docker pull kibana:7.4.2

2.2 创建实例

2.2.1 创建挂载目录

mkdir  ./config
mkdir ./data

 记得授予权限

chmod -R 777 ./elasticsearch

2.2.2 使容器外任何地址都能够访问 elasticsearch

echo "http.host: 0.0.0.0">>./config/elasticsearch.yml

elasticsearch.yml

http.host: 0.0.0.0

2.2.3 docker 启动

docker run --name elasticsearch -p 9200:9200 -p9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms512m -Xmx1024m" \
-v ./config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v ./data:/usr/share/elasticsearch/data \
-v ./plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2

2.3 安装Kibana
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.232.209:9200 -p 5601:5601 \
-d kibana:7.4.2

 3.初步检索

3.1 _cat 

查看节点信息

http://192.168.232.209:9200/_cat/nodes

查看elasticsearch的健康状态

http://192.168.232.209:9200/_cat/health

查看elasticsearch的主节点信息

http://192.168.232.209:9200/_cat/master

查看所有索引

http://192.168.232.209:9200/_cat/indices

3.2 索引一个文档(保存或修改一条记录)

保存一个数据,保存在那个索引的哪个类型下,指定用哪个唯一标识

http://192.168.232.209:9200/customer/external/1

 3.3 查询文档 

http://192.168.232.209:9200/customer/external/1

3.4 更新文档 

3.4.1 _update

这个操作如果修改文档的值和原来一样,则不会更新版本。

3.4.2 

3.5 删除文档

3.6 bulk 批量 API

批量操作 

从这个网站复制

https://gitee.com/xlh_blog/common_content/blob/master/es%E6%B5%8B%E8%AF%95%E6%95%B0%E6%8D%AE.json#

执行 /_bluk 

 4.进阶检索

1.searchAPI

ES支持两种基本方式检索:

  • 一个是通过使用REST request URI 发送搜索参数(uri + 检索参数)
  • 另一个是通过使用REST request body 来发送它们 (uri + 请求体)
GET /bank/_search?q=*&sort=account_number:asc

q=* 查询所有

sort 跟据 account_number 升序

2.QueryDSL

GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "account_number":  "asc"
    },
    {
      "balance": "desc"
    }
  ]
}

3.部分检索

GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "account_number":  "desc"
    },
    {
      "balance": "desc"
    }
  ],
  "from": 0,
  "size": 20,
  "_source": ["balance","account_number"]
  
}

4. match[匹配查询]

GET /bank/_search
{
  "query": {
    "match": {
      "account_number": 20
    }
  }
  
}
GET /bank/_search
{
  "query": {
    "match": {
      "address": "mill lane"
    }
  }
  
}

全文检索按照评分进行排序

5.match_phrase [短语匹配]

将需要匹配的值当成一个整体单词(不分词)进行检索

GET /bank/_search
{
  "query": {
    "match_phrase": {
      "address": "mill lane"
    }
  }
  
}

6.multi_match [多字段匹配]

这是或,只要一个字段满足,就返回


GET /bank/_search
{
  "query": {
    "multi_match": {
      "query": "mill",
      "fields": ["state","address"]
    }
  }
  
}

能够正常分词 

GET /bank/_search
{
  "query": {
    "multi_match": {
      "query": "mill Movico",
      "fields": ["city","address"]
    }
  }
  
}

7.bool复杂查询

bool用来做复杂查询:

复合语句可以合并 任何 其他查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以相互嵌套,可以表达非常复杂的逻辑。

must: 必须达到must列举所有条件 也就是相当于 AND

must_not: 且不满足里面的条件

should: 不是or 就是匹配上面有加分项


GET /bank/_search
{
  
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "gender": "m"
          }
        },
        {
          "match": {
            "address": "Mill"
          }
        }
      ],
      "must_not": [
        {
          "match": {
            "age": 28 
          }
        }
      ],
      "should": [
        {
          "match": {
            "lastname": "v"
          }
        }
      ]
      
      
    }
  }
  
  
}

8.filter [结果过滤]

并不是所有的查询都需要产生分数,特别是那些仅用于 "filtering" (过滤) 的文档。为了不计算分数Elasticsearch 会自动检查场景并且优化查询的执行。

GET /bank/_search
{
  
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "gender": "m"
          }
        },
        {
          "match": {
            "address": "Mill"
          }
        }
      ],
      "must_not": [
        {
          "match": {
            "age": 18 
          }
        }
      ],
      "should": [
        {
          "match": {
            "lastname": "Wallace"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 18,
            "lte": 20
          }
        }
      }
    }
  }
}

9.term

和match一样。匹配某个属性的值。全文检索字段用match,其他非text 字段匹配用term

不用全文检索的时候用term 比如数字 年龄

GET /bank/_search
{
"query": {
  "term": {
    "age": {
      "value": "28"
    }
  }
}
}
GET /bank/_search
{
"query": {
  "match": {
    "email.keyword": "margueritewall@aquoavo.com"
  }
}
}

address.keyword 和 match_phrase 区别:

前者 就是精确匹配 ,后者包含这个短语 就行

非文本字段 用 term

文本字段用 match

10. aggregations (执行聚合)

聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于 SQL GROUP BY 和 SQL 的聚合函数 。在Elasticsearch 中, 您有执行搜索返回 hits (命中结果) ,并且同时返回聚合结果,把一个响应中的所有hits (命中结果) 分隔开的能力 。 这是非常强大且有效,您可以执行查询和多个聚合,并且在一次使用中得到各自 的(任何一个的) 返回结果,使用一次简化和简化的API 来避免网络往返。

搜索 address 中包含mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。

GET /bank/_search
{
  "query": {
    "match": {
      "address": "mill"
    }
  },
  "aggs": {
    "ageAgg": {
      "terms": {
        "field": "age",
        "size": 10
      }
    },
    "ageAvg":{
    "avg": {
      "field": "age"
    }
    },
    "blanceAvg":{
      "avg": {
        "field": "balance"
      }
    }
  },
  "size": 0
}

复杂:

按照年龄聚合,并且请求这些年龄段的这些人的平均薪资


##按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "aggAgg": {
      "terms": {
        "field": "age",
        "size": 100
      },
      "aggs": {
        "aggAvg": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
  
  
}

复杂2:

查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资.

##查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资

GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "aggAggs": {
      "terms": {
        "field": "age",
        "size": 100
      }
      ,
    "aggs": {
      "avgBalanceAll":{
        "avg": {
        "field": "balance"
      }
      }
      ,
       "genderAgg": {
          "terms": {
            "field": "gender.keyword",
            "size": 2
          },
          "aggs": {
            "avgBlance": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
    }
    }
  }
}

11.mapping(映射)

所有数据类型

创建一个有类型定义的索引

PUT /my_index
{
  "mappings": {
    "properties": {
      "age":{"type": "integer"  },
      "email":{"type": "keyword"},
      "name":{"type": "text"}
    }
  }
}

 添加映射字段

PUT /my_index/_mapping
{
  
  "properties": {
      "employee-id":{
        "type":"keyword",
        "index":false 
      }
    }
}

index =false 代表不参与索引,是搜索不到他的,相当于冗余存储字段,通过其他字段查出来

迁移数据

创建新索引

PUT /newbank
{
  "mappings": {
    "properties": {
      "account_number": {
        "type": "long"
      },
      "address": {
        "type": "text"
      },
      "age": {
        "type": "integer"
      },
      "balance": {
        "type": "long"
      },
      "city": {
        "type": "keyword"
      },
      "email": {
        "type": "keyword"
      },
      "employer": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "firstname": {
        "type": "text"
      },
      "gender": {
        "type": "keyword"
      },
      "lastname": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "state": {
        "type": "keyword"
      }
    }
  }
}

上面是6.0以后不用类型保存的迁移方法

下面是6.0之前

 

POST _reindex
{
  "source": {
    "index": "bank",
    "type": "account"
  },
  "dest": {
    "index": "newbank"
  }
}

 5.分词

POST _analyze
{
  "analyzer": "standard",
  "text": "The 2 QUICK Brown_Foxes jumped over the lazy dog's bone."
}

 1.安装ik分词器

注意:不能用默认elastics-plugin install xx.zip 进行自动安装

进入这个网址下

Index of: analysis-ik/stable/ (infinilabs.com)

进入es 容器·内部 plugins 目录

docker exec -it 容器id /bin/bash

POST _analyze
{
  "analyzer": "ik_smart",
  "text": "我是中国人"
}




POST _analyze
{
  "analyzer": "ik_max_word",
  "text": "鸡你太美"
}

 安装方法和我上一篇文章一样

ElasticSearch-CSDN博客

vagrant ssh密码登录  122集

2.自定义分词器

1.重新安装nginx

命令

在nginx文件夹下,执行

docker run -p 80:80 --name nginx \
-v ./html:/usr/share/nginx/html \
-v ./logs:/var/log/nginx \
-v ./conf:/etc/nginx  \
-d nginx:1.10

 2. 创建分词文件

/opt/nginx/html/es/fenci.txt

尚硅谷
乔碧螺

3.在es插件,路径下找到xml文件对应的分词库路径,保存位置进行修改

"/opt/elasticearch/plugins/ik/config/IKAnalyzer.cfg.xml"

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
	<comment>IK Analyzer 扩展配置</comment>
	<!--用户可以在这里配置自己的扩展字典 -->
	<entry key="ext_dict"></entry>
	 <!--用户可以在这里配置自己的扩展停止词字典-->
	<entry key="ext_stopwords"></entry>
	<!--用户可以在这里配置远程扩展字典 -->
	 <entry key="remote_ext_dict">http://虚拟机地址:80/es/fenci.txt</entry>
	<!--用户可以在这里配置远程扩展停止词字典-->
	<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

4.修改以后重启restart es容器

docker restart elasticsearch

6.Elasticsearch整合Spirngboot使用

1.Elasticsearch-Rest-Client 官方 RestClient ,封装类ES操作,API层次分明,上手简单。

最终选择Elasticsearch-Rest-Client (elasticsearch-rest-high-level-client)

https://www.elastic.co/guid/en/elasticsearch/client/java-rest/current/java-rest-high.html
<!--        导入ES高阶API-->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>${elasticsearch.version}</version>
        </dependency>
package com.jmj.gulimall.search.config;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * 导入依赖
 * 编写配置 给容器中注入一个 RestHighLevelClient
 * 参照官方API 操作就可以了 https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.4/java-rest-high-getting-started-initialization.html
 */
@Configuration
public class GulimallElasticSearchConfig {


    @Bean
    public RestHighLevelClient esRestClient() {
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(
                        new HttpHost("192.168.232.209", 9200, "http")));
        return client;
    }

}

2.RequestOption

请求选项:比如安全验证,带token 请求头

package com.jmj.gulimall.search.config;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * 导入依赖
 * 编写配置 给容器中注入一个 RestHighLevelClient
 * 参照官方API 操作就可以了 https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.4/java-rest-high-getting-started-initialization.html
 */
@Configuration
public class GulimallElasticSearchConfig {

    public static final RequestOptions COMMON_OPTIONS;
    static {
        RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
//        builder.addHeader("Authorization", "Bearer " + TOKEN);
//        builder.setHttpAsyncResponseConsumerFactory(
//                new HttpAsyncResponseConsumerFactory
//                        .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024));
        COMMON_OPTIONS = builder.build();
    }

    @Bean
    public RestHighLevelClient esRestClient() {
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(
                        new HttpHost("192.168.232.209", 9200, "http")));
        return client;
    }

}

3.Index API

第一种

 第二种

第三种

第四种

   /**
     * 测试存储数据到ES
     * 更新也可以
     */
    @Test
    void indexData() throws IOException {
        //index索引 users
        IndexRequest indexRequest = new IndexRequest("users");
        //设置document id ,不设置就会默认生成
        /**
         * 若是同样的id重复执行,就是更新操作 乐观锁控制版本
         */
        indexRequest.id("1");
        //1. key value  pair
//        indexRequest.source("userName","zhangsan","age",18,"gender","男");
        //2,JSON

        User user = new User("zhangsan", "男", 18);
        String json = new ObjectMapper().writeValueAsString(user);

        //一秒超时时间
        indexRequest.timeout(TimeValue.timeValueSeconds(1));


        indexRequest.source(json, XContentType.JSON);//要保存的内容
        //执行操作
        IndexResponse index = client.index(indexRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
        //提取有用的响应数据
        System.out.println(index);

    }

4.查询API

 @Data
    public static class Account{
        private int account_number;
        private String firstname;
        private String address;
        private int balance;
        private String gender;
        private String city;
        private String employer;
        private String state;
        private int age;
        private String email;
        private String lastname;

    }

    /**
     * search检索
     */
    @Test
    void searchData() throws IOException {
        //1、创建检索请求
        SearchRequest searchRequest = new SearchRequest();
        //2、指定索引
        searchRequest.indices("bank");
        //3、检索条件DSL
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();

//        sourceBuilder.query();
//        sourceBuilder.from();
//        sourceBuilder.size();
//        sourceBuilder.aggregations();

//        sourceBuilder.query(QueryBuilders.matchAllQuery());
        sourceBuilder.query(QueryBuilders.matchQuery("address","mill"));

        //按照年龄进行分组
        TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
        sourceBuilder.aggregation(ageAgg);
        //计算平均薪资
        AvgAggregationBuilder balanceAge = AggregationBuilders.avg("balanceAvg").field("balance");
        sourceBuilder.aggregation(balanceAge);



        System.out.println("检索条件:"+sourceBuilder);
        searchRequest.source(sourceBuilder);
        //4、执行检索
        SearchResponse response = client.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
        //5、响应 分析结果
//        System.out.println(response.toString());

        SearchHits hits = response.getHits();
        SearchHit[] hits1 = hits.getHits();
        for (SearchHit documentFields : hits1) {
            String sourceAsString = documentFields.getSourceAsString();
            Account account = new ObjectMapper().readValue(sourceAsString, Account.class);
            System.out.println(account);
        }

        //获取分析数据
        Aggregations aggregations = response.getAggregations();
        Terms ageAgg1 = aggregations.get("ageAgg");
        for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
            String keyAsString = bucket.getKeyAsString();
            System.out.println("年龄:"+keyAsString+"=>"+bucket.getDocCount());
        }
        Avg balanceAvg = aggregations.get("balanceAvg");
        System.out.println("平均薪资:"+balanceAvg.getValue());


    }

7.SKU 在es种存储的模型 

其中,库存信息的标题使用了ik分词器,图片信息,品牌名,品牌id等信息均不可检索。商品的规格参数等信息以nested类型,即嵌入属性存储。相关的细节这里不再赘述。

PUT product
{
  "mappings": {
    "properties": {
      "skuId": {
        "type": "long"
      },
      "spuId": {
        "type": "long"
      },
      "skuTitle": {
        "type": "text",
        "analyzer": "ik_smart"
      },
      "skuPrice": {
        "type": "keyword"
      },
      "skuImg": {
        "type": "keyword",
        "index": false,
        "doc_values": false
      },
      "saleCount": {
        "type": "long"
      },
      "hosStock": {
        "type": "boolean"
      },
      "hotScore": {
        "type": "long"
      },
      "brandId": {
        "type": "long"
      },
      "catalogId": {
        "type": "long"
      },
      "brandName": {
        "type": "keyword",
        "index": false,
        "doc_values": false
      },
      "brandImg": {
        "type": "keyword",
        "index": false,
        "doc_values": false
      },
      "catalogName": {
        "type": "keyword",
        "index": false,
        "doc_values": false
      },
      "attrs": {
        "type": "nested",
        "properties": {
          "attrId": {
            "type": "long"
          },
          "attrName": {
            "type": "keyword",
            "index": false,
            "doc_values": false
          },
          "attrValue": {
            "type": "keyword"
          }
        }
      }
    }
  }
}

8.ES扁平化处理

PUT my_index/_doc/1
{
  "group":"fans",
  "user":[
    {
      "first":"John",
      "last":"Smith"
    },
    {
      "first":"Alice",
      "last":"White"
    }
  ]
}

GET my_index/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "user.first": "Alice"
          }
        },
        {
          "match": {
            "user.first": "Alice"
          }
        }
      ]
    }
  }
}

 取消扁平化处理 

PUT my_index
{
  "mappings": {
    "properties": {
      "user":{
        "type": "nested"
      }
    }
  }
}

再次查询

9. 商城上架

 @Override
    @Transactional(rollbackFor = Exception.class)
    public void up(Long spuId) {


        //组装需要的数据
        //1. 查出当前 spuid 对应的所有sku 信息,品牌 的名字。
        List<SkuInfoEntity> skuInfoEntityList = skuInfoService.getSkusBySpuId(spuId);

        //TODO 查询当前sku的所有可以用来检索的属性
        List<ProductAttrValueEntity> baseAttrs = productAttrValueService.baseAttrlistforspu(spuId);
        List<Long> attrIds = baseAttrs.stream().map(a -> a.getAttrId()).collect(Collectors.toList());

        List<Long> searchAttrIds = attrService.selectSearchAtts(attrIds);

        List<SkuEsModel.Attrs> attrsList = baseAttrs.stream().filter(item -> searchAttrIds.contains(item.getAttrId()))
                .map(item -> {
                    SkuEsModel.Attrs attrs1 = new SkuEsModel.Attrs();
                    BeanUtils.copyProperties(item, attrs1);
                    return attrs1;
                })
                .collect(Collectors.toList());

        //TODO 发送远程调用 库存系统查询是否有库存
        List<Long> skuIds = skuInfoEntityList.stream().map(s -> s.getSkuId()).distinct().collect(Collectors.toList());

        List<SkuHasStockVo> skusHasStock = wareFeignService.getSkusHasStock(skuIds);

        Map<Long, Boolean> stockMap = skusHasStock.stream().collect(Collectors.toMap(s -> s.getSkuId(), s -> s.getHasStock()));

        //2.封装每个SKU 的信息
        List<SkuEsModel> upProducts = skuInfoEntityList.stream().map(sku -> {
            SkuEsModel esModel = new SkuEsModel();
            BeanUtils.copyProperties(sku, esModel);
            esModel.setSkuPrice(sku.getPrice());
            esModel.setSkuImg(sku.getSkuDefaultImg());

            Long skuId = esModel.getSkuId();
            Boolean aBoolean = stockMap.get(skuId);
            if (aBoolean!=null){
                esModel.setHasStock(aBoolean);
            }else {
                esModel.setHasStock(false);
            }



            //TODO 热度评分
            esModel.setHotScore(0L);
            //TODO 查询品牌和分类的名字信息
            BrandEntity brand = brandService.getById(esModel.getBrandId());
            esModel.setBrandName(brand.getName());
            esModel.setBrandImg(brand.getLogo());

            CategoryEntity category = categoryService.getById(esModel.getCatalogId());
            esModel.setCatalogName(category.getName());

            //设置检索属性
            esModel.setAttrs(attrsList);

            return esModel;
        }).collect(Collectors.toList());

        //TODO 将数据发送给es进行保存
        searchFeignService.productStatusUp(upProducts);

        //TODO 修改状态
        this.update(new UpdateWrapper<SpuInfoEntity>()
                .set("publish_status", ProductConstant.StatusEnum.SPU_UP.getCode())
                        .set("update_taime",new Date())
                .eq("id",spuId));

        //Feign调用流程
        /**
         * 1、构造请求数据,将对象转为json
         * 2、发送请求进行执行(执行成功会解码响应数据)
         * 3、执行请求会有重试机制
         * //默认重试机制是关闭状态
         * while(true){
         *    
         * }
         */
    }