个人技术分享

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!

大家好,我是29岁的小米,一名积极活泼、热爱分享技术的开发者。今天,我们来聊聊分布式系统中的一个重要话题——分布式一致性,特别是数据库和Redis的一致性问题。希望这篇文章能帮助你更好地理解并应用这些概念。

在互联网高速发展的今天,高效的数据读取是每个系统都必须面对的问题。为了实现高效读取,很多系统都采用了全量缓存的策略,即所有数据都存储在缓存里,所有的读服务请求都不再降级到数据库,完全依赖缓存。这种方式在某些场景下能有效解决因降级到数据库导致的毛刺问题,但同时也带来了新的挑战,特别是在数据更新时的分布式事务问题。今天,我们就来探讨如何通过订阅数据库的Binlog来实现数据同步,从而解决这些问题。

全量缓存:高效读取的利器

全量缓存的优势

全量缓存策略意味着将所有数据都放在缓存中,而不是只缓存部分热点数据。这种方式的好处显而易见:

  • 高效读取:所有请求都直接命中缓存,极大地提高了读取速度,减少了数据库的访问压力。
  • 稳定性:避免了因数据库访问带来的毛刺问题,使系统更加稳定。

然而,全