个人技术分享

  • 选题依据(包括项目研究的背景、研究或应用的意义、国内外研究或应用现状,附主要参考文献)

(一)研究背景及意义

民宿起源于欧美乡村,而民宿在中国出现最早的是在台湾垦丁,并在台湾不断的发展兴盛,随着中国大陆经济以及旅游业的蓬勃发展,民宿的发展迅速[1]。随着民宿数量不断增加有些问题也随之而出,首先民宿行业准入机制不明确,导致一些不符合条件的机构或个人也进入民宿行业,他们往往缺乏专业的管理和运营能力,服务质量低下,用户体验差[2]。其次,民宿的监管机制不健全,导致一些民宿存在安全隐患、卫生问题、消防问题等,这些问题可能会对客人的生命财产安全造成威胁。此外,民宿的竞争激烈,一些民宿为了吸引客人,采用低价策略,导致整个行业的利润水平下降,这也会影响民宿的服务质量和用户体验[3]。

随着旅游业的快速发展和人们对于旅行体验的不断追求,民宿作为一种新的住宿选择方式,得到了越来越多人的喜爱。然而,随之而来的问题是如何更好地管理和分析民宿数据,提供相关的决策支持和可视化分析,以促进民宿行业的可持续发展,大数据技术的应用为民宿行业提供了更多的机会和挑战[4]。本研究旨在基于大数据技术设计并实现一个民宿数据可视化分析系统,以提供全面的数据分析和决策支持,让民宿的各个维度的数据指标更加全面生动的展示出来,帮助民宿经营者和旅游相关决策者更好地理解和分析民宿市场,提高民宿的运营效率和用户满意度。帮助消费者提前了解民宿的市场环境,对民宿的选择提供参考作用[5]。

(二)国内外研究现状

1、国外研究现状

国外民宿行业相较于中国起步较早,很早就进行民宿行业的研究。Jianzhuang等学者研究发现,民宿周围环境、经营者管理的情况和经营管理者与消费者之间的关系会影响消费者对民宿的选择倾向[6]。Dinesh等人用实验的方法探究房主特征对消费者信任的影响,发现房主的头像和声誉得分对消费者的选择倾向有显著影响,即会影响消费者是否选择体验其服务[7]。Adamia等人采用随机抽样的研究方法调查约翰内斯堡都市,以探究服务质量感知与客户期望之间的联系,其研究结果表明,为了提升服务质量,民宿经营者需在设施和环境管理上注重舒适性,并改变服务方式,这些举措不仅能够满足客户的期望,还能够提高客户对服务质量的感知[8]。

2、国内研究现状

在知网数据库中检索关键词“民宿”后利用知网的总体趋势分析功能得到自2014年后关于民宿的相关研究正在逐年线性递增。王春英和陈宏民将是否拥有厨房作为虚拟变量引入模型,得到厨房正向显著影响共享民宿的价格的结论,还提出地理位置因素影响房源定价[9]。张延宇通过文本分析和情感分析等技术探讨Airbnb网站评论信息中消费者的情感倾向,并利用多重线性回归的方法,分析了用户评论及房源的相关特征对共享民宿预订的影响[10]。王佳慧通过对大学生的旅游动机、旅游目的地的感知、旅游决策的分析,构建大学生旅游消费行为影响因素模型,最后得出月生活费是大学生旅游决策最大的影响因素[11]。

(三)参考文献

[1] 莫彩云. 阳朔民宿旅游发展调查研究[D].广西师范大学,2023.DOI:10.27036/d.cnki.ggxsu.2023.001684.

[2] 赵采云.北京市共享民宿销量的影响因素及空间格局差异性分析[D].东北财经大学,2023.DOl:10.27006/d.cnki.gdbcu.2022.000986.

[3] 穆敏杰.SD民宿社交媒体营销策略研究[D]云南财经大学,2023.DOl:10.27455/d.cnki.gycm c.2023.001050.

[4] 马妍.共享经济发展背景下民宿业发展对策研究[J].商业文化,2022(07):114-115.

[5] 文君.基于大数据分析的高端民宿消费行为研究[D],郑州大学,2022.DOl:10.27466/d.cnki.g zzdu.2021.003666.

[6] Jianzhuang Zheng,Lingyan Huang.Characterizing the Spatiotemporal Patterns and Key Determinantsof Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets[J].Sustainability.2022,72(42).

[7] Dinesh VALLABH.Profiling Tourists in the Bed and Breakfast Establishments in Port Alfred, Eastern Cape[J].Journal of Tourism Intelligence and Smartness,2019,1(1).

[8] Adamiak,C.,2018,“Mapping Airbnb Supply in European Cities”,Annals of Tourism Research,Vol.71,PP67-71.

[9] 王春英,陈宏民.共享短租平台住宿价格及其影响因素研究一基于小猪短租网站相关数据的分析[J].价格理论与实践,2018,(6):14-17.

[10] 张延宇.共享经济背景下在线民宿预订评价影响因素分析[D].哈尔滨工业大学,2017.

[11] 王佳慧.大学生旅游消费行为现状分析[D].河北经贸大学,2018.

[12]张艳丽,吴淮北.Hive数据仓库在Hadoop大数据环境下数据的导入与应用[J].电脑编程技巧与维护,2022(12):97-99.DOI:10.16184/j.cnki.comprg.2022.12.006.

[13] 赵海国.Ajax技术支持下的ECharts动态数据实时刷新技术的实现[J].电子技术,2018,47(03):25-27+57.

核心算法代码分享如下:

from flask import Flask, request
import json
import pymysql
from flask_mysqldb import MySQL
import io, sys
# 创建应用对象
app = Flask(__name__)
app.config['MYSQL_HOST'] = 'bigdata'
app.config['MYSQL_USER'] = 'root'
app.config['MYSQL_PASSWORD'] = '123456'
app.config['MYSQL_DB'] = 'hive_minsu'
mysql = MySQL(app)  # this is the instantiation
sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding='utf8')

@app.route('/tables01')
def tables01():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM tables01 order by score desc ''')
    row_headers = [x[0] for x in cur.description]  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)


@app.route('/tables05')
def tables05():
    cur = mysql.connection.cursor()
    cur.execute('''select * from tables05 limit 5''')
    #cur.execute('''SELECT * FROM tables05 ''')
    row_headers = [x[0] for x in cur.description]  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables06')
def tables06():
    cur = mysql.connection.cursor()
    cur.execute('''select * from tables06 ''')
    #cur.execute('''SELECT * FROM tables05 ''')
    row_headers = [x[0] for x in cur.description]  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)


@app.route('/tables03')
def tables03():
    cur = mysql.connection.cursor()
    cur.execute('''select * from tables03 ''')
    row_headers = [x[0] for x in cur.description]  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)


@app.route('/tables02')
def tables02():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM tables02''')
    row_headers = [x[0] for x in cur.description]  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)


@app.route('/tables04')
def tables04():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM tables04''')
    #row_headers = [x[1] for x in cur.description]  # this will extract row headers
    row_headers = ['title', 'price']
    rv = cur.fetchall()
    json_data = []
    print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)












if __name__ == "__main__":
    #app.run(debug=True)
    app.run(host="0.0.0.0", port=8080, debug=False)