个人技术分享

前言:Hello大家好,我是小哥谈。目标检测一直是目标检测领域中的一个具有挑战性的问题,已经有一些研究提出了改进方法,如添加多个注意力模块或改变特征融合网络的整体结构,以解决这个问题。然而,这些模型的计算成本较高,使得部署实时目标检测系统变得不可行,同时还有改进的空间。为此,提出了改进的YOLOv5模型:HIC-YOLOv5,以解决上述问题。首先,添加了一个针对小目标的额外预测Head,以提供更高分辨率的特征图,从而实现更好的预测。其次,在Backbone网络和Neck之间采用了一种称为"involution block"的模块,以增加特征图的通道信息。此外,在Backbone网络的末端应用了一种名为CBAM的注意力机制,不仅降低了与以前的方法相比的计算成本,还强调了通道和空间领域的重要信息。结果显示,HIC-YOLOv5在VisDrone-2019-DET数据集上将mAP@[.5:.95]提高了6.42%,将mAP@0.5提高了9.38%。🌈

     目录

🚀1.论文解析

🚀2.网络结构

🚀3.添加步骤 

🚀4.改进方法

💥💥步骤1:common.py文件修改

💥💥步骤2:yolo.py文件修改

💥💥步骤3:创建自定义yaml文件

💥💥步骤4:修改自定义yaml文件

💥💥步骤5:验证是否加